VORTEX BEAM GENERATION IN MICROWAVE BAND
نویسندگان
چکیده
منابع مشابه
Ultrafast optical vortex beam generation in the ultraviolet.
We report on the generation of ultrafast vortex beams in the deep ultraviolet (DUV) wavelength range at 266 nm, for the first time to our knowledge. Using a Yb-fiber-based green source in combination with two spiral phase plates of orders 1 and 2, we were able to generate picosecond Laguerre-Gaussian (LG) beams at 532 nm. Subsequently, these LG beams were frequency doubled by single-pass, secon...
متن کاملCurrent and vortex statistics in microwave billiards.
Using the one-to-one correspondence between the Poynting vector in a microwave billiard and the probability current density in the corresponding quantum system, probability densities and currents were studied in a microwave billiard with a ferrite insert as well as in an open billiard. Distribution functions were obtained for probability densities, currents, and vorticities. In addition, the vo...
متن کاملIntegrated optical vortex beam receivers.
A simple and ultra-compact integrated optical vortex beam receiver device is presented. The device is based on the coupling between the optical vortex modes and whispering gallery modes in a micro-ring resonator via embedded angular gratings, which provides the selective reception of optical vortex modes with definitive total angular momentum (summation of spin and orbital angular momentum) thr...
متن کاملNonreciprocal microwave band-gap structures.
An electrically controlled nonreciprocal electromagnetic band-gap material is proposed and studied. The new material is a periodic three-dimensional regular lattice of small magnetized ferrite spheres. In this paper, we consider plane electromagnetic waves in this medium and design an analytical model for the material parameters. An analytical solution for plane-wave reflection from a planar in...
متن کاملResolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam
We extend the subtractive imaging method to label-free second harmonic generation (SHG) microscopy to enhance the spatial resolution and contrast. This method is based on the intensity difference between two images obtained with circularly polarized Gaussian and doughnut-shaped beams, respectively. By characterizing the intensity and polarization distributions of the two focused beams, we verif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress In Electromagnetics Research C
سال: 2021
ISSN: 1937-8718
DOI: 10.2528/pierc20082006